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1. 

Composite, structural elements are commonly used in today’s technology and, on the other
hand, non-homogeneities may be generated by manufacturing procedures. The analysis of
mechanical systems with varying material properties has been the subject of many recent
investigations. In an excellent paper, Spence and Horgan [1] found upper and lower bounds
for the natural frequencies of vibration of a circular membrane with stepped radial density
and they showed that eigenvalue estimation techniques based on an integral equation
approach are more effective than classical variational techniques. A conformal mapping
approach was used in reference [2] in the case of composite membranes of regular
polygonal shape whose inner circular core possesses a density r1 while the remaining core
is characterized by r0.

In general, previous investigations deal with composites, simply connected membranes,
an exception being made of the analysis reported in reference [3] where circular annular
composite membranes have been considered. The present study deals with the doubly
connected membrane shown in Figures 1(a) and (b). In the case of discontinuous variation
of the density, in Figure 1(a) one has

r(x, y)=0r0 (constant) (x̄, ȳ)oD�0,
r1 (constant) (x̄, ȳ)oD�1 −D�0,

(1)

while, when dealing with continuous variation of the density it is assumed that it varies
according to (see Figure 1(b))

r(x, y)= r0[1+ g/a(zx̄2 + ȳ2 −R0)], gq 0 (constant). (2)

2.        

   - 

Assuming normal modes of vibration, the governing functional is given by the well
known expression

J(W)=ggD�1
0W2

x̄ +W2
ȳ1 dx̄ dȳ−

v2

S ggD�1

r(x̄, ȳ)W2 dx̄ dȳ, (3)

where W is the amplitude of vibration. Introducing the dimensionless variables x= x̄/a
and y= ȳ/b, expression (3) becomes

a2J(W)=ggD1
0W2

x +W2
y1 dx dy− l2 ggD1

f(x, y)W2 dx dy, (4)
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Figure 1(a). Doubly connected membrane: (a) case of discontinuously varying density; (b) case of continuously
varying density; D�0 =D�1.

where

l2 = r0a2v2/S, f(x, y)=61,
g,

(x, y)oD0,
(x, y)oD1 −D0, g= r1/r0

in the case of the configuration shown in Figure 1(a), and

f(x, y)=1+ g(zx2 + y2 − r0), r0 =R0/a,

when the density varies in a continuous fashion. The amplitude of the fundamental mode
shape is approximated by means of the expression

W3Wa =C181(x, y)+C282(x, y), (5)

where

81(x, y)= (1/2− x2)(1/2− y2)(zx2 + y2 − r0),

82(x, y)= (1/2− x2)(1/2− y2)(zx2 + y2 − r0)p,

and where p is Rayleigh’s optimization parameter.
In accordance with the Rayleigh-Ritz method one requires the minimization condition

a2

2
1J
1Ci

= s
2

j=1 $gg
D1

(8jx8ix +8jy8iy ) dx dy− l2 gg
D1

f8j8i dx dy%Cj =0, (i=1,2), (6)

which from the non-triviality requirement yields a secular determinant in l, the lower root
being the fundamental frequency coefficient l1 =zr0/Sv1a. Since

l1 = l1( p), (7)

by minimizing l1 with respect to p, one obtains an optimized value of the fundamental
frequency coefficient.

3.  :       

As shown in reference [4] the domain shown in Figure 1(a) can be mapped with
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good engineering accuracy, onto an annular domain in the j-plane by means of the
expression

z= ap (x+iy)= f(j)= apAs s
a

n=0

(−1)nanj
1+4n, (8)

where ap is a/2 (apothem of the square), As =1·0787 [4] and j=r eiu.
The approximation is valid as long as R0/ap , R1/ap�1, see Figure 1, but from the point

of view of the determination of eigenvalues good accuracy is achieved for R1/ap Q 0·5 [4].
For =j == r�1 one obtains from equation (8):

=z = 2 apAsr. (9)

Accordingly,

r0 2R0/apAs; r1 2R1/apAs . (10)

Substituting equations (8), (9) and (10) in equation (3) one obtains after some
manipulations

J[W(r, u)]=g
1

r0
g

2p

0 $01W
1r 1

2

+
1
r2 01W

1u 1
2

%r dr du

−
v2r0

S $a2
pA2

s g
r1

r0
g

2p

0

W2r dr du+
r1

r0 g
1

r1
g

2p

0

W2= f '=2r dr du%. (11)

T 1

Fundamental eigenvalues l1 of the configuration shown in Figure 1(a)

0·5 1 1·5 2
ZXXCXXV ZXXCXXV ZXXCXXV ZXXCXXV

2R1/a 2R0/a (I) (II) (I) (II) (I) (II) (I) (II)

0·20 0·05 7·88 7·87 5·62 5·65 4·60 4·64 3·99 4·03
0·10 8·58 8·59 6·08 6·11 4·97 4·99 4·30 4·33

0·30 0·10 8·40 8·31 6·08 6·11 5·00 5·04 4·35 4·39
0·20 9·66 9·86 6·87 7·02 5·62 5·74 4·87 4·97

0·40 0·10 7·94 7·79 6·08 6·11 5·10 5·16 4·47 4·54
0·20 9·32 9·45 6·87 7·02 5·68 5·81 4·95 5·07
0·40 10·99 11·33 7·82 8·09 6·40 6·62 5·55 5·74

0·50 0·10 7·40 – 6·08 – 5·25 – 4·67 –
0·20 8·72 – 6·87 – 5·81 – 5·12 –
0·30 10·53 – 7·82 – 6·49 – 5·66 –
0·40 12·33 – 8·38 – 7·24 – 6·28 –

0·75 0·10 6·40 – 6·08 – 5·77 – 5·48 –
0·20 7·36 – 6·87 – 6·40 – 5·99 –
0·30 8·62 – 7·82 – 7·14 – 6·56 –
0·40 10·04 – 8·83 – 7·88 – 7·14 –
0·50 12·22 – 10·21 – 8·85 – 7·89 –

(I) Determined using the optimized Rayleigh-Ritz method in the physical plane.
(II) Determined by means of conformal mapping-optimized Rayleigh-Ritz method.
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T 2

Fundamental eigenvalues l1 of the configuration shown in Figure 1b. Determination using the
optimized Rayleigh-Ritz method in the physical plane

g
ZXXXXXXXXXXXXCXXXXXXXXXXXXV

2R0/a 0·5 1 1·5 2

0·1 5·739 5·443 5·187 4·963
0·2 6·514 6·204 5·934 5·694
0·3 7·455 7·129 6·841 6·584
0·4 8·468 8·138 7·843 7·576
0·5 9·842 9·502 9·192 8·910

Following previous investigations [3, 4] it was found approximate W(r, u) by means of the
expression

W(r, u)3Wa (r)=A1(1− rp)(1− r0/r)+A2(1− rp+2)[1− (r0/r)2]

+A3(1− rp+4)[1− (r0/r)4], (12)

where p is, again, Rayleigh’s optimization parameter. The determination of the optimized
value of the fundamental eigenvalue, l1, follows the previously explained procedure.

3.  

Table 1 depicts values of l1 for the case of discontinuously varying density. A
comparison of eigenvalues obtained by the two approaches presented in this paper is
shown for 2R1/a=0·20, 0·30 and 0·40 and several values of 2R0/a and g. The differences
between values obtained by the different methodologies range from 0·1–4%. The
conformal mapping approach yields lower values for 2R1/a=0·30 and 0·40 and
2R0/a=0·10 for g=0·5. The agreement is, in general, quite acceptable. Table 2 shows
values of l1 for the case of a continuously varying density (Figure 1(b)). The variation of
the fundamental eigenvalue with respect to the intervening parameters appears to be quite
reasonable.
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